Pseudo-real Riemann surfaces and chiral regular maps

نویسندگان

  • Emilio Bujalance
  • Marston Conder
  • Antonio F. Costa
چکیده

A Riemann surface is called pseudo-real if it admits anticonformal automorphisms but no anticonformal involution. Pseudo-real Riemann surfaces appear in a natural way in the study of the moduli space MKg of Riemann surfaces considered as Klein surfaces. The moduli space Mg of Riemann surfaces of genus g is a two-fold branched covering of MKg , and the preimage of the branched locus consists of the Riemann surfaces admitting anticonformal automorphisms — which are either real Riemann surfaces (admitting anticonformal involutions) or pseudo-real Riemann surfaces. We study the latter

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Riemann Surfaces: a Threefold Categorical Equivalence

We define and prove basic properties of Riemann surfaces, which we follow with a discussion of divisors and an elementary proof of the RiemannRoch theorem for compact Riemann surfaces. The Riemann-Roch theorem is used to prove the existence of a holomorphic embedding from any compact Riemann surface into n-dimensional complex projective space Pn. Using comparison principles such as Chow’s theor...

متن کامل

The Moduli Space of Maps with Crosscaps: Fredholm Theory and Orientability

Just as a symmetric surface with separating fixed locus halves into two oriented bordered surfaces, an arbitrary symmetric surface halves into two oriented symmetric halfsurfaces, i.e. surfaces with crosscaps. Motivated in part by the string theory view of real Gromov-Witten invariants, we introduce moduli spaces of maps from surfaces with crosscaps, develop the relevant Fredholm theory, and re...

متن کامل

Crystallography and Riemann Surfaces

The level set of an elliptic function is a doubly periodic point set in C. To obtain a wider spectrum of point sets, we consider, more generally, a Riemann surface S immersed in C2 and its sections (“cuts”) by C. We give S a crystallographic isometry in C2 by defining a fundamental surface element as a conformal map of triangular domains and S as its extension by reflections in the triangle edg...

متن کامل

On Representations of Certain Pseudo-anosov Maps of Riemann Surfaces with Punctures

Let S be a Riemann surface of type (p, n) with 3p + n > 4 and n ≥ 1. Let α1, α2 ⊂ S be two simple closed geodesics such that {α1, α2} fills S. It was shown by Thurston that most maps obtained through Dehn twists along α1 and α2 are pseudo-Anosov. Let a be a puncture. In this paper, we study the family F(S, a) of pseudo-Anosov maps on S that projects to the trivial map as a is filled in, and sho...

متن کامل

Harmonic tori in Lie groups

In recent years, there has been considerable interest in the construction and parametrisation of harmonic maps of Riemann surfaces into a compact Lie group (this is the principal chiral model of the Physicists). After contributions by many workers, the case where the domain is a Riemann sphere is now quite well understood (see [1,9,10, 11]). Here the key idea is to associate to such harmonic ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006